Image Classification with Cifar 10

TL;DR

What worked:

Cifar 10 Description:

Given an image, classify it into one of the 10 classes

Input

Image with 3 channels(R,G,B)

Output

Cifar 10 classes: Airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck

Created Network

Layer (type:depth-idx) Output Shape Param #
Conv2d: 1-1 [-1, 64, 32, 32] 1,792
BatchNorm2d: 1-2 [-1, 64, 32, 32] 128
ReLU: 1-3 [-1, 64, 32, 32]
MaxPool2d: 1-4 [-1, 64, 16, 16]
Conv2d: 1-5 [-1, 128, 16, 16] 73,856
BatchNorm2d: 1-6 [-1, 128, 16, 16] 256
ReLU: 1-7 [-1, 128, 16, 16]
Conv2d: 1-8 [-1, 256, 16, 16] 295,168
BatchNorm2d: 1-9 [-1, 256, 16, 16] 512
ReLU: 1-10 [-1, 256, 16, 16]
MaxPool2d: 1-11 [-1, 256, 8, 8]
Conv2d: 1-12 [-1, 256, 8, 8] 590,080
BatchNorm2d: 1-13 [-1, 256, 8, 8] 512
ReLU: 1-14 [-1, 256, 8, 8]
Conv2d: 1-15 [-1, 256, 6, 6] 590,080
BatchNorm2d: 1-16 [-1, 256, 6, 6] 512
ReLU: 1-17 [-1, 256, 6, 6]
MaxPool2d: 1-18 [-1, 256, 3, 3]
Conv2d: 1-19 [-1, 256, 1, 1] 590,080
ReLU: 1-20 [-1, 256, 1, 1]
Linear: 2-1 [-1, 256] 65,792
ReLU: 2-2 [-1, 256]
Dropout: 1-22 [-1, 256]
Linear: 1-23 [-1, 10] 2,570

Code